Current-phase relationship, thermal and quantum phase slips in superconducting nanowires made on a scaffold created using adhesive tape.
نویسندگان
چکیده
Quantum phase slippage (QPS) in a superconducting nanowire is a new candidate for developing a quantum bit [Mooij et al. New J. Phys. 2005, 7, 219; Mooij et al. Nat. Phys. 2006, 2, 169; Khlebnikov http://arxiv.org/abs/quant-ph/0210019 2007]. It has also been theoretically predicted that the occurrence of QPS significantly changes the current-phase relationship (CPR) of the wire due to the tunneling between topologically different metastable states [Khlebnikov Phys. Rev. B 2008, 78, 014512]. We present studies on the microwave response of the superconducting nanowires to reveal their CPRs. First, we demonstrate a simple nanowire fabrication technique, based on commercially available adhesive tapes, which allows making thin superconducting wire from different metals. We compare the resistance vs temperature curves of Mo(76)Ge(24) and Al nanowires to the classical and quantum models of phase slips. In order to describe the experimentally observed microwave responses of these nanowires, we use the McCumber-Stewart model [McCumber J. Appl. Phys. 1968, 39, 3113; Stewart Appl. Phys. Lett. 1968, 12, 277], which is generalized to include either classical or quantum CPR.
منابع مشابه
Probing Quantum Phase Slips in Superconducting Nanowires Modified Using High Bias Voltage Pulses by Thomas Aref
Quantum phase slips (QPS) or the macroscopic quantum tunneling (MQT) of a nanowire’s order parameter through an activation energy barrier have remained the subject of intense debate for many years. They are expected to occur at low enough temperature where thermally activated phase slips (TAPS) have been frozen out in analogy with Josephson junctions where the macroscopic tunneling of phase at ...
متن کاملThermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration
Superconducting nanowires currently attract great interest due to their application in single-photon detectors and quantum-computing circuits. In this context, it is of fundamental importance to understand the detrimental fluctuations of the superconducting order parameter as the wire width shrinks. In this paper, we use controlled electromigration to narrow down aluminium nanoconstrictions. We...
متن کاملQuasiperiodicity and revivals in dynamics of quantum phase slips in Josephson junction chains and superconducting nanowires
Quantum phase slips in superconducting loops threaded by an external magnetic field provide a coupling between macroscopic quantum states with supercurrents circulating in opposite directions. We analyze the dynamics of the phase slips as a function of the superconducting loop length, from fully coherent dynamics for short loops to dissipative dynamics for the long ones. For intermediate length...
متن کاملStatistics of localized phase slips in tunable width planar point contacts
The main dissipation mechanism in superconducting nanowires arises from phase slips. Thus far, most of the studies focus on long nanowires where coexisting events appear randomly along the nanowire. In the present work we investigate highly confined phase slips at the contact point of two superconducting leads. Profiting from the high current crowding at this spot, we are able to shrink in-situ...
متن کاملSuperconducting nanowires fabricated using molecular templates.
The application of single molecules as templates for nanodevices is a promising direction for nanotechnology. We use suspended deoxyribonucleic acid molecules or single-walled carbon nanotubes as templates for fabricating superconducting devices and then study these devices at cryogenic temperatures. Because the resulting nanowires are extremely thin, comparable in diameter to the templating mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2009